

Série 90

Moteurs à pistons axiaux Informations techniques

Série 90

Description générale

Moteurs à pistons axiaux et à cylindrée fixe pour transmissions hydrostatiques en circuit fermé.

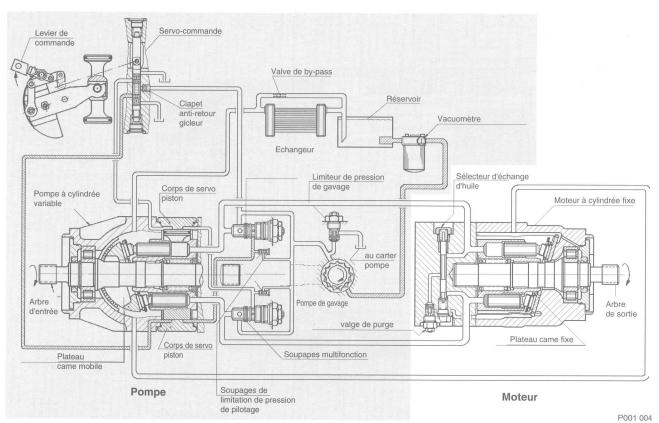
La vitesse de rotation est proportionnelle au débit du fluide d'entrée.

Le couple de sortie varie en fonction de la différence de pression entre les branches haute pression et basse pression.

Le sens de rotation de l'arbre du moteur est inversé lorsque le débit change de sens.

Caractéristiques techniques

- La série 90 des moteurs à pistons axiaux comprend 6 modèles de 30 cm³/t à 130 cm³/t afin de répondre au mieux aux diverses applications.
- Puissance élévée avec des pressions allant jusqu'à 480 bars et des vitesses jusqu'à 5000 t/mn.
- **Fiabilité** prouvée par des essais intensifs au banc et en application.
- **Utilisation** idéale des moteurs grâce aux fixations et bouts d'arbre courants ainsi qu'aux raccordements standard.
- Un réseau commercial et un service après-vente sont présents dans le monde entier pour satisfaire notre clientèle (150 filiales, distributeurs et centres de service après-vente agréés).

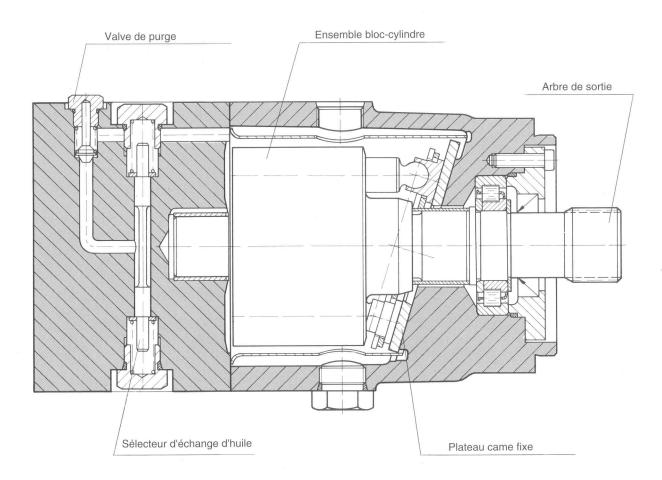

Moteurs à pistons axiaux et à cylindrée fixe

Série 90

Schéma de fonctionnement

Circuit basse pression
Circuit de drainage
Circuit haute pression
Circuit de pilotage
Circuit d'aspiration

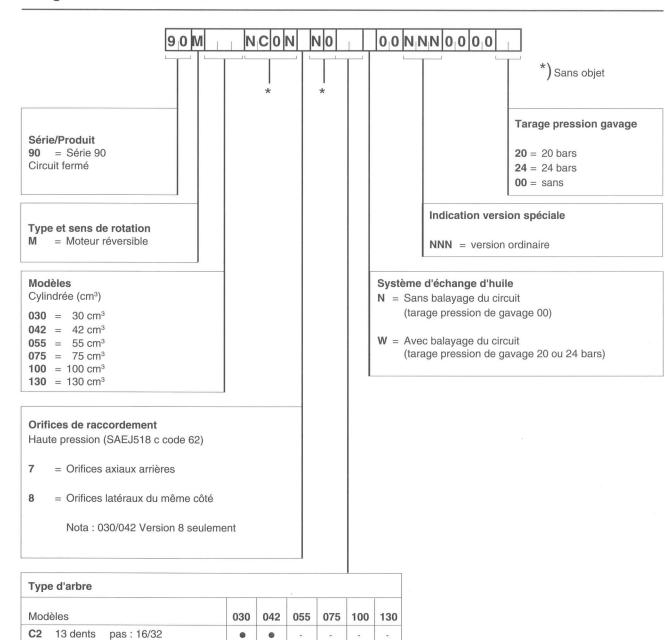
Figure 1


La figure 1 montre schématiquement le fonctionnement d'une transmission hydrostatique composée d'une pompe série 90 à pistons axiaux et à cylindrée variable et d'un moteur série 90 à cylindrée fixe.

Série 90

Vue en coupe

Figure 2 : Moteur 90 M à cylindrée fixe


P000 785

Moteurs à pistons axiaux et à cylindrée fixe

Série 90

Désignation et codification

- Standard
- O = Option
- = Non disponible

C3 15 dents pas: 16/32

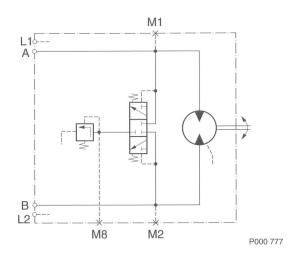
C6 21 dents pas: 16/32

C7 23 dents pas: 16/32

C6 27 dents pas: 16/32

0

0



Spécifications techniques

Désignation et schéma

Moteur à cylindrée fixe

Figure 3: Moteur à cylindrée fixe avec échange d'huile incorporé

Orifices:

= Branches haute pression

Drainages

= Prise de pression pour "A" et "B"

Prise de pression de purge

Conception

Moteur à pistons axiaux et à cylindrée fixe

Mode de fixation

Bride frontale SAE B, C et D (SAE J744)

Implantations

Orifices hautre pression: Bride SAE, axiale (030/042/055/075/100/130)

Bride SAE, radiale (055/075/100/130)

Autres orifices :

Taraudage SAE

Sens de rotation

Rotation droite ou gauche en regardant l'arbre d'entraînement

Positionnement

Au choix, le carter du moteur doit toujours être rempli d'huile

Sens de débit

Voir tableau 7 page 14

Plage de pression de fonctionnement

Voir page 9

Pression nominale: 420 bars Pression maximale: 480 bars

Moteurs à pistons axiaux et à cylindrée fixe

Caractéristiques hydrauliques

Pression de carter (voir page 9)

Maxi en continu: 3 bars

Maxi instantanée : 5 bars

(au démarrage à froid)

Fluides

(voir également page 9)

Se reporter au catalogue des fluides SDF N° 697581 ou BLN 9887

Plage de température du fluide 1) (voir page 9)

= -40 °C intermittent lors du démarrage à froid ϑ mini

ϑ nominale = 104 °C en continu = 115 °C intermittent ϑ maxi

mesurées au point le plus chaud, par ex. orifice de drainage

1) en respectant la viscosité admissible

Plage de viscosité

mm2/sec (Cst)	CONDITIONS
ϑ = 5	intermittent
ϑ = 6,4	mini en continu
ϑ = 12 - 60	Optimum
ϑ = 110	maxi en continu
ϑ = 1600	intermittent au démarrage à froid

Filtration

• Pollution admissible : classe ISO 18/13 ou mieux Voir catalogue SDF N° 697581 ou BLN 9887

Caractéristiques techniques

Tableau 1					MODELES									
		Dimension	030	042	055	075	100	130						
Cylindre	ée	cm ³	30	42	55	75	100	130						
Vitesse de	Nominale	t/mn	4200	4200	3900	3600	3300	3100						
	Maximum t/mn		4600	4600	4250	3950	3650	3400						
rotation	Limite	t/mn	5000	5000	4700	4300	4000	3700						
Couple théoriqu	ie	Nm/bar	0,48	0,67	0,88	1,19	1,59	2,07						
Couple d'inertie		kg m²	0,0023	0,0039	0,0060	0,0096	0,0150	0,0230						
Masse		kg	11	15	22	26	34	45						

^{*)} Prescriptions techniques, recommandations et explications, voir page 8

Série 90

Détermination d'un moteur

		Vg•n			Vg	=	Cylindrée par tou	r cm³
Débit d'entrée	$Q_e =$	1000 • η,		l/min	\boldsymbol{p}_{hp}	=	Haute pression	bar
		,•			\boldsymbol{p}_{bp}	=	Basse pression	bar
Couple	M ₀ =	Vg • Δp • η _{mh}		Nm	Δр	=	Php - Pbp	bar
en sortie	е	20 • π			n	=	Vitesse de rotation	n t/mn
		Mॢ • n	$Q_e \bullet \Delta p \bullet \eta_t$		η_{v}	=	Rendement volur	métrique
Puissance	$P_e =$	=		kW	η_{mh}	=	Rendement hydro	omécanique
en sortie		9550	600		$\boldsymbol{\eta}_t$	=	Rendement globa	al
D/ i		$Q_e \bullet 1000 \bullet \eta_v$		and and				
Régime	n =	Vg		min ⁻¹				
		~						

Spécifications techniques générales

Plages de vitesses

- La vitesse nominale continue est la vitesse maximale conseillée à pleine puissance qui permet d'assurer une durée de vie normale dans le respect des précautions d'usage (ex. viscosité et température du fluide, pression de gavage, etc...).
- La vitesse maximale correspond à la vitesse maximale admissible. Le dépassement de ce seuil entraîne une réduction de la durée de vie du composant ou son arrêt immédiat ainsi que le risque de <u>rupture définitive</u> de la ligne de transmission.

Attention!

La perte de <u>transmissibilité de puissance</u> d'un système hydrostatique dans une phase d'accélération, de déccélération ou en position neutre peut entraîner l'incapacité de freinage hydrostatique. Pour cette raison, il faut installer un système de freinage parallèle capable de freiner le véhicule en marche et/ou d'assurer la fonction de freins de parking.

Plages de pressions de fonctionnement

Une pression élevée a une forte influence sur la durée de vie du composant. Elle entraîne un fort taux de charge sur le composant et réduit sa durée de vie, tout comme un moteur à combustion ou une transmission mécanique sous charge.

La pression maximum est la pression la plus élevée autorisée de façon intermittente. Cette pression correspond à la charge maximum de la machine.

Moteurs à pistons axiaux et à cylindrée fixe

Série 90

Spécifications techniques générales (suite)

Plage de pressions de fonctionnement (suite)

La pression maximale ne doit pas dépasser 2 % du temps de fonctionnement. Elle est normalement la pression de tarage des soupapes de sécurité HP.

Afin de déterminer la transmission en tenant compte des différentes charges et vitesses, il est utile de connaître le facteur de service de la machine.

Notre service technique peut vous aider en fonction de la durée de vie souhaitée dans la définition des plages de pression.

Pression de carter

La pression continue ne doit pas dépasser 3 bars dans des conditions normales d'utilisation. Elle peut, dans certaines conditions mais de façon intermittente, être plus élevée, par exemple lors du démarrage à froid. Elle ne doit cependant pas dépasser 5 bars.

Fluides

Utiliser les fluides recommandés dans la spécification SAUER-SUNDSTRAND SDF 698581 ou BLN 9887. Il n'est pas nécessaire d'utiliser des additifs anti-usure pour les composants de la série 90. Si de tels fluides sont utilisés pour les autres composants du circuit hydraulique, il faut veiller aux bonnes propriétés thermiques et à la bonne stabilité hydrolytique afin de prévenir l'usure, l'érosion et la corrosion des autres composants de la transmission.

Il n'est pas permis de mélanger différents fluides.

Il est possible d'utiliser pour la série 90 des fluides difficilement inflammables dans des conditions différentes de fonctionnement. Consulter nos services.

Plages de température

Il faut rester dans les plages de température indiquées page 7 pour les fluides à base d'huile minérale. Les températures seront mesurées au point le plus chaud du composant (normalement juste à l'orifice de drainage).

Les échangeurs de température servent à maintenir la température dans la plage indiquée.

Échange d'huile - moteur version W

Les moteurs de la série 90 sont prévus pour être équipés d'un système d'échange d'huile intégré. Celui-ci permet le renouvellement du fluide pour des applications où la température dans la boucle fermée s'élève anormalement ou pour éviter l'accumulation de pollutions dans le circuit haute pression. Le limiteur de pression de purge du moteur est réglé sur 15 l/mn.

Pour une transmission hydrostatique composée d'une pompe et d'un moteur de la série 90, le limiteur de pression de purge du moteur doit être taré à la même valeur que le limiteur de pression de gavage de la pompe.

Consulter nos services lorsqu'une transmission est composée de composants de différentes séries.

Série 90

P000 795

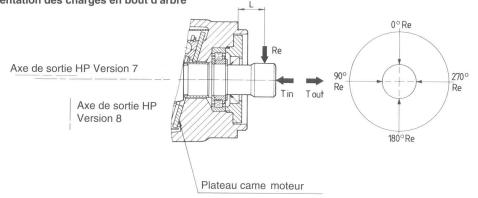
Spécifications techniques générales (suite)

Charges externes sur l'arbre de sortie

Les arbres des composants de la série 90 peuvent supporter des charges radiales et axiales. Les limites de la charge radiale admissible sont fonction de la position de la charge, de la direction de la force et des conditions d'utilisation du composant. Le tableau 3 et la figure 4 donnent les éléments suivants :

A) La charge radiale admissible selon différentes directions de la force et en fonction de la distance (L) (Longueur entre le point d'application de la force et la face d'appui).

Les limites de la charge axiale sont également mentionnées.


B) La durée de vie théorique en heures avec une pression de circuit à 240 bars, 1800 t/mn, sans charge externe.

C) La figure 4 montre les différents sens et directions de la charge. Les calculs sont valables pour la position du plateau came représenté.

Tableau 3 : Charges en bout d'arbre et durée de vie théorique B10 du roulement

Мо	dèles		030	042	055	075	100	130
	nstante roulement c	m	0,018	0,0190	0,0274	0,0236	0,0356	0,0330
A)	Charge max. admissible 1) Charge radiale = Re		1		٥			
	Re = Me/ (C+L)							
	• Me à 0°, 180°	Nm					*	
	• Me à 90°, 270°	Nm						lt.
	2) Charge axiale T max. admissible dans le sens IN	N						
	3) Charge axiale T max. admissible dans le sens OUT	N						
B)	Durée de vie des roulements B10 à 240 bars et 1800 t/mn	Re = 0° h	6520	10170	15510	16500	17550	24920

SAUER SUNDSTRAND

Moteurs à pistons axiaux et à cylindrée fixe

Série 90

Spécifications techniques générales (suite)

Durée de vie théorique B10 du roulement du moteur

Charge radiale à 0°:

Durée de vie B10 du roulement 1 000 000 Kb

3,33

L.

Charge radiale à 180° :

Charge radiale à 90° ou 270° :

Durée de vie B10 1 000 000 Kb du roulement = 60 x p H + F

n = Vitesse de rotation t/mn

Kb = Constante de charge du roulement

H = Charge radiale du roulement résultant de la pression de fonctionnement

H = 1,96 x Kh x (Δ P +41,4) N (Δ P en bar)

Kh = Constante de charge hydraulique

 E = Charge radiale du roulement résultant de la charge sur l'arbre (Re) à la distance (L) de la face d'appui

Re= Charge sur l'arbre en N

L = Distance de la face d'appui au point d'application de la force en m

Tableau 4

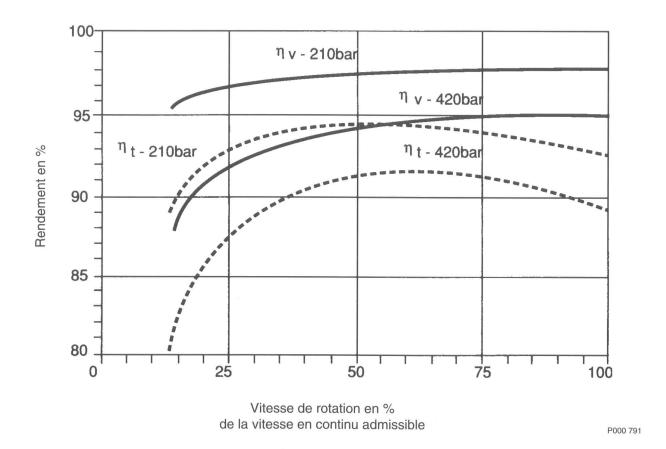
Modèle	es	030	042	055	075	100	130
Kb	N	34500	49000	64433	80942	99053	110000

Tableau 5

Modè	eles	030	042	055	075	100	130
Kh	cm ²	8,73	10,85	12,32	15,16	18,19	21,8

Tableau 6

Modèles	030	042	055	075	100	130
E	Re $x \frac{L + 0,141}{0,123}$	Re x $\frac{L + 0,153}{0,134}$	Re x $\frac{L + 0,174}{0,151}$	Re $\times \frac{L + 0,195}{0,170}$	Re x $\frac{L + 0,215}{0,188}$	Re x $\frac{L + 0,238}{0,205}$

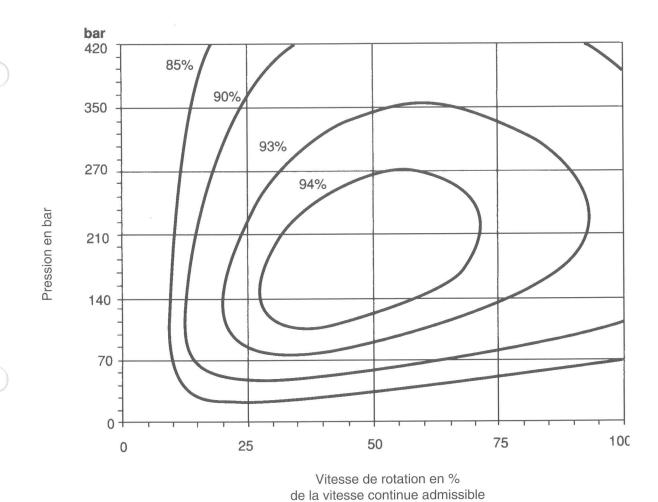


Série 90

Courbes de rendement

La figure 5 indique les courbes de rendement global et volumétrique des moteurs de la série 90, à des pressions de 210 et 420 bars et pour une viscosité du fluide de 8,2 mm2/s et des vitesses de rotation inférieures ou égales aux vitesses maxi admissibles en continu.

Figure 5 : Rendement global et rendement volumétrique des moteurs


Moteurs à pistons axiaux et à cylindrée fixe

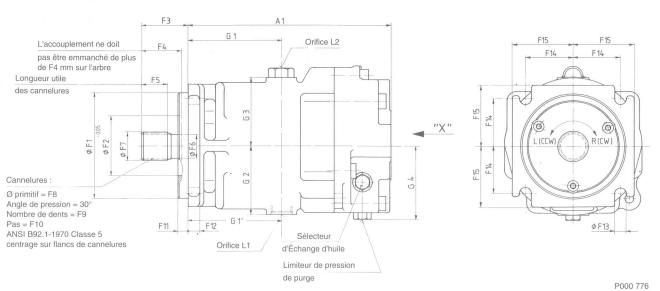
Série 90

Graphiques de rendement

Les courbes ci-dessous indiquent le rendement total pour les moteurs de la série 90, pour des pressions de 70 à 420 bars en fonction de la vitesse de rotation (figure 6).

Figure 6 : Rendement global

P000 793



Série 90

Dimensions

Figure 7 : Moteurs à pistons axiaux et à cylindrée fixe 90 M

Raccordement type 7: Orifices axiaux

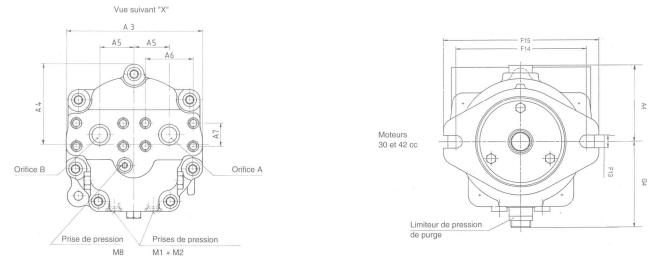


Tableau 8 : dimensions des orifices

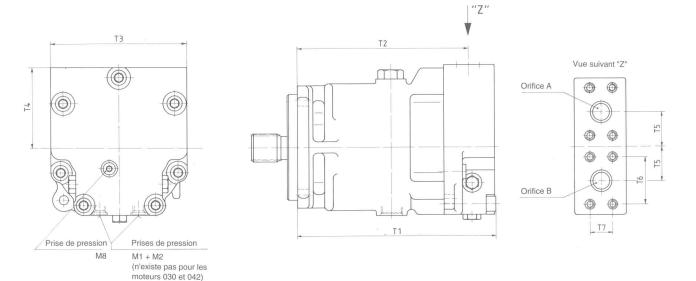
1) taraudage droit SAE étanchéité par joint torique

Modèles	"A" + "B"	Orifices 1) "L1" + "L2"	Orifices 1) "M ₁ ", "M ₂ "+ "M ₈ "	
90M030	Bride SAE - Taille 1/2 - 6000 PSI 4 trous - 5/16 - 18 UNC - Prof. 16 mm	7/8-14 UNF		
90M042	Bride SAE - Taille 3/4 - 6000 PSI 4 trous - 3/8 - 16 UNC - Prof. 20 mm	7/0-14 OIVI	9/16-18 UNF	
90M055 90M075 / 90M100	Bride SAE - Taille 1 - 6000 PSI 4 trous - 7/16 - 14 UNC - Prof. 20 mm	1 1/16 - 12 UN	9/10-18 UNF	
90M130	Bride SAE - Taille 1 1/4 4 trous - 1/2 13 UNC - Prof. 23 mm	1 5/6 - 12 UN		

Tableau 7 : sens de rotation

Sens	Orifice	Orifice		
de rotation *	"A"	"B"		
Droit	Sortie	Entrée		
(R)				
Gauche	Entrée	Sortie		
(L)				

^{*} En regardant le bout d'arbre


Moteurs à pistons axiaux et à cylindrée fixe

Série 90

Dimensions (suite)

Suite de la figure 7

Raccordement type 8 : Orifices radiaux du même côté

P000 776

Tableau 9 : Dimensions (mm)

										~	
Modèles	G1'/G1	G2	G3	G4	ØF1	ØF2	F3	F4	F5		F6
90M030	57,5/81,5	69	69	96 max	101,6	64	41/46	33/38	19/25	-	/19,9
90M042	67/86	74	76,2	96 max	101,6	64	41/46	33/38	19/25	18,7	/19,9
90M055	104	74	76	82	127	108	55,5	47,6	32,5	29	9,0
90M075	114	83	83	89	127	108	55,5	47,6	34,8	32	2,3
90M100	128	95	90	91	127	116	55,5	47,6	33,3	32	2,3
90M130	146	97	97	108	152,4	112	74,6	66,7	42,5	3	7,0
Modèles	ØF7	ØF8	F9	F10	F11	F12	ØF13	F14	F15	A1	Д
90M030	21,72/25,27	20,637/23,812	13/15	16/32	9,7	12,5	14,3	146	174	-	
90M042	21,72/25,27	20,637/23,812	13/15	16/32	9,7	12,5	14,3	146	174	-	54
90M055	34,42	33,338	21	16/32	12,7	14,8	14,3	57,3	73	222	1
90M075	37,59	36,513	23	16/32	12,7	14,7	14,8	57,3	73	246	1
90M100	37,59	36,513	23	16/32	12,7	14,3	14,8	57,3	73	275	1
90M130	43,88	42,863	27	16/32	12,45	14,4	21	80,8	100	-	
Modèles	A4	A5	A6	A7	T1	T2	T3	T4	T5	T6	1
90M030	80	-	-	-	170	150	144	71	32,5	40,5	18
90M042	87,2	-		-	190,5	169,5	164	84	42	50,8	2
90M055	91	41,8	57,2	27,8	222	190	165	91	41,8	57,2	2
90M075	97	41.8	57,2	27,8	239	207	165	99	41,8	57,2	2
90M100	104	41,8	57,2	27,8	266	231	185	104	41,8	57,2	2
90M130	-	-	-	-	296	258	208	112	51,9	66,7	3

Sous réserve de modifications techniques.